细粒度命名实体键入(FG-NET)旨在根据上下文将实体提及的实体提及到广泛的实体类型(通常数百个)。虽然遥远的监督是获取监督培训数据的最常见方法,但它带来了标签噪声,因为它将类型标签分配给实体提及,而不论提及背景如何。为了处理标签噪声,对FG-NET的领先研究假设,细颗粒的实体键入数据具有欧几里得性质,这限制了现有模型在打击标签噪声方面的能力。鉴于细粒型层次结构表现出层次结构的事实,它使双曲线空间成为对FG-NET数据进行建模的自然选择。在这项研究中,我们提出了FGNET-RH,这是一个新颖的框架,该框架从双曲线几何形状与图形结构结合使用,以表现性能增强的方式执行实体打字。 FGNET-RH最初使用LSTM网络与其上下文相关的提及,后来形成了一个图形来提炼/完善双曲线空间中的提及编码。最后,精制的提及编码用于实体键入。使用不同基准数据集的实验表明,就严格的准确性而言,FGNET-RH将FGNET-RH提高了FG-NET的性能高达3.5%。
translated by 谷歌翻译
Human civilization has an increasingly powerful influence on the earth system. Affected by climate change and land-use change, natural disasters such as flooding have been increasing in recent years. Earth observations are an invaluable source for assessing and mitigating negative impacts. Detecting changes from Earth observation data is one way to monitor the possible impact. Effective and reliable Change Detection (CD) methods can help in identifying the risk of disaster events at an early stage. In this work, we propose a novel unsupervised CD method on time series Synthetic Aperture Radar~(SAR) data. Our proposed method is a probabilistic model trained with unsupervised learning techniques, reconstruction, and contrastive learning. The change map is generated with the help of the distribution difference between pre-incident and post-incident data. Our proposed CD model is evaluated on flood detection data. We verified the efficacy of our model on 8 different flood sites, including three recent flood events from Copernicus Emergency Management Services and six from the Sen1Floods11 dataset. Our proposed model achieved an average of 64.53\% Intersection Over Union(IoU) value and 75.43\% F1 score. Our achieved IoU score is approximately 6-27\% and F1 score is approximately 7-22\% better than the compared unsupervised and supervised existing CD methods. The results and extensive discussion presented in the study show the effectiveness of the proposed unsupervised CD method.
translated by 谷歌翻译
Active learning with strong and weak labelers considers a practical setting where we have access to both costly but accurate strong labelers and inaccurate but cheap predictions provided by weak labelers. We study this problem in the streaming setting, where decisions must be taken \textit{online}. We design a novel algorithmic template, Weak Labeler Active Cover (WL-AC), that is able to robustly leverage the lower quality weak labelers to reduce the query complexity while retaining the desired level of accuracy. Prior active learning algorithms with access to weak labelers learn a difference classifier which predicts where the weak labels differ from strong labelers; this requires the strong assumption of realizability of the difference classifier (Zhang and Chaudhuri,2015). WL-AC bypasses this \textit{realizability} assumption and thus is applicable to many real-world scenarios such as random corrupted weak labels and high dimensional family of difference classifiers (\textit{e.g.,} deep neural nets). Moreover, WL-AC cleverly trades off evaluating the quality with full exploitation of weak labelers, which allows to convert any active learning strategy to one that can leverage weak labelers. We provide an instantiation of this template that achieves the optimal query complexity for any given weak labeler, without knowing its accuracy a-priori. Empirically, we propose an instantiation of the WL-AC template that can be efficiently implemented for large-scale models (\textit{e.g}., deep neural nets) and show its effectiveness on the corrupted-MNIST dataset by significantly reducing the number of labels while keeping the same accuracy as in passive learning.
translated by 谷歌翻译
终身学习旨在学习一系列任务,而无需忘记先前获得的知识。但是,由于隐私或版权原因,涉及的培训数据可能不是终身合法的。例如,在实际情况下,模型所有者可能希望不时启用或禁用特定任务或特定样本的知识。不幸的是,这种灵活的对知识转移的灵活控制在以前的增量或减少学习方法中,即使在问题设定的水平上也被忽略了。在本文中,我们探索了一种新颖的学习方案,称为学习,可回收遗忘(LIRF),该方案明确处理任务或特定于样本的知识去除和恢复。具体而言,LIRF带来了两个创新的方案,即知识存款和撤回,这使用户指定的知识从预先训练的网络中隔离开来,并在必要时将其注入。在知识存款过程中,从目标网络中提取了指定的知识并存储在存款模块中,同时保留了目标网络的不敏感或一般知识,并进一步增强。在知识提取期间,将带走知识添加回目标网络。存款和提取过程仅需在删除数据上对几个时期进行填充时期,从而确保数据和时间效率。我们在几个数据集上进行实验,并证明所提出的LIRF策略具有令人振奋的概括能力。
translated by 谷歌翻译
本文介绍了DCT-NET,这是一种新颖的图像翻译体系结构,可用于几张肖像风格。给定有限的样式示例($ \ sim $ 100),新的体系结构可以产生高质量的样式转移结果,具有先进的能力,可以合成高保真内容和强大的一般性来处理复杂的场景(例如,遮挡和配件)。此外,它可以通过一个由部分观察(即风格化的头)训练的优雅评估网络启用全身图像翻译。几乎没有基于学习的样式转移是具有挑战性的,因为由于仅由少数几个培训示例形成的偏见分布,学到的模型很容易在目标域中过度拟合。本文旨在通过采用“首先校准,稍后翻译”的关键思想来应对挑战,并以本地注重的翻译探索增强的全球结构。具体而言,所提出的DCT-NET由三个模块组成:一个内容适配器从源照片借用功能的先验来校准目标样本的内容分布;使用仿射变换来释放空间语义约束的几何扩展模块;以及通过校准分布产生的样品的质地翻译模块学习细粒的转换。实验结果证明了所提出的方法在头部风格化方面具有优势及其对具有自适应变形的完整图像翻译的有效性。
translated by 谷歌翻译
通过机器学习学习个性化的癌症治疗,可以提高癌症患者生存的机会。尽管机器学习和精确肿瘤学的最新进展,但这种方法仍然具有挑战性,因为在临床前/临床研究中收集数据以建模多种治疗效率通常是一个昂贵的,耗时的过程。此外,由于某些参与者/样本在试验期间未接受最合适的治疗方法,因此治疗分配的随机分配被证明是次优的。为了应对这一挑战,我们将药物筛查研究作为“上下文匪徒”问题,其中算法根据有关癌细胞系的上下文信息选择抗癌治疗剂,同时调整其治疗策略以最大程度地以“在线”方式以最大化治疗反应。我们建议使用一种新型的深贝叶斯土匪框架,该框架在近似后验之前使用功能,以基于由基因组特征和药物结构组成的多模式信息进行药物反应预测。我们对三个大规模的体外药物基因组学数据集进行了经验评估我们的方法,并表明我们的方法在识别给定细胞系的最佳处理方面优于几个基准。
translated by 谷歌翻译
在这项研究中,提出了一种半监督的学习(SSL)方法,用于改善双颞图像对检测的城市变化检测。所提出的方法适应了双任务暹罗差异网络,该网络不仅可以通过差分解码器进行预测,而且还可以通过语义解码器进行两种图像的片段建筑物。首先,对体系结构进行了修改,以产生从语义预测得出的第二个更改预测。其次,采用SSL来改善监督的变更检测。对于未标记的数据,我们引入了一种损失,鼓励网络预测两个变化输出之间的一致变化。使用SpaceNet7数据集对所提出的方法进行了有关城市变化检测的测试。与三个完全监督的基准相比,SSL取得了改善的结果。
translated by 谷歌翻译
无奖励强化学习(RL)考虑了代理在探索过程中无法访问奖励功能的设置,但必须提出仅在探索后才揭示的任意奖励功能的近乎最佳的政策。在表格环境中,众所周知,这是一个比奖励意识(PAC)RL(代理在探索过程中访问奖励功能)更困难的问题$ | \ Mathcal {s} | $,状态空间的大小。我们表明,在线性MDP的设置中,这种分离不存在。我们首先在$ d $二维线性MDP中开发了一种计算高效算法,其样品复杂度比例为$ \ widetilde {\ Mathcal {o}}(d^2 H^5/\ epsilon^2)$ 。然后,我们显示出$ \ omega(d^2 h^2/\ epsilon^2)$的匹配尺寸依赖性的下限,该限制为奖励感知的RL设置。据我们所知,我们的方法是第一个在线性MDP中实现最佳$ d $依赖性的计算有效算法,即使在单次奖励PAC设置中也是如此。我们的算法取决于一种新的程序,该过程有效地穿越了线性MDP,在任何给定的``特征方向''中收集样品,并在最大状态访问概率(线性MDP等效)中享受最佳缩放样品复杂性。我们表明,该探索过程也可以应用于解决线性MDP中````良好条件''''协变量的问题。
translated by 谷歌翻译
运动预测是计算机视觉中的经典问题,其旨在预测观察到的姿势序列的未来运动。已经提出了各种深度学习模型,在运动预测上实现了最先进的性能。然而,现有方法通常专注于在姿势空间中建模时间动态。不幸的是,人类运动的复杂和高度的性质带来了动态背景捕获的固有挑战。因此,我们远离传统的基于姿势的表示,并提出采用各个关节的相空间轨迹表示的新方法。此外,目前的方法倾向于仅考虑物理连接的关节之间的依赖性。在本文中,我们介绍了一种小说卷积神经模型,以有效利用明确的运动解剖学知识,并同时捕获关节轨迹动态的空间和时间信息。然后,我们提出了一个全局优化模块,了解各个联合功能之间的隐式关系。经验上,我们的方法在大规模3D人体运动基准数据集(即,Human3.6m,CMU Mocap)上进行评估。这些结果表明,我们的方法在基准数据集中设置了新的最先进状态。我们的代码将在https://github.com/post-group/teid中提供。
translated by 谷歌翻译
获取一阶遗憾界限 - 遗憾的界限不是作为最坏情况,但有一些衡量给定实例的最佳政策的性能 - 是连续决策的核心问题。虽然这种界限存在于许多设置中,但它们在具有大状态空间的钢筋学习中被证明是难以捉摸的。在这项工作中,我们解决了这个差距,并表明可以将遗憾的缩放作为$ \ mathcal {o}(\ sqrt {v_1 ^ \ star})$中的钢筋学习,即用大状态空间,即线性MDP设置。这里$ v_1 ^ \ star $是最佳政策的价值,$ k $是剧集的数量。我们证明基于最小二乘估计的现有技术不足以获得该结果,而是基于强大的Catoni平均估计器制定一种新的稳健自归一化浓度,其可能具有独立兴趣。
translated by 谷歌翻译